Une partie de l'eau qui pénètre dans le sol est évaporée de nouveau dans l'atmosphère soit directement soit par l'intermédiaire des plantes: l'ensemble de ces pertes en eau constitue l'évapo-transpiration. L'évaporation se fait surtout à la surface du sol. Même pendant la pluie, une partie de l'eau est immédiatement ré-évaporée car l'atmosphère n'est pas saturé en eau. Le départ de l'eau superficielle fait remonter l'eau des zones plus profondes. La quantité évaporée diminue avec la quantité retenue dans le sol car les forces de capillarité s'oppose à son départ et l'énergie nécessaire pour extraire l'eau est d'autant plus grande que le sol s'appauvrit en eau. Les forces de capillarité entre les grains et la tension superficielle du film d'eau autour des gains déterminent un potentiel de matrice qui tend à retenir l'eau et qui peut être mesurée à l'aide d'un tensiomètre. La succion du sol dépend de sa texture et de la taille des pores, de la quantité d'eau contenue par rapport à sa capacité de champ (quantité maximale absorbée). Les conditions climatiques sont également déterminantes.
Taille des pores (µm) | Tension de succion (hPa) | Commentaire |
20 000 | 0,15 | grosse crevasse |
4 000 | 0,75 | galerie de vers |
300 | 10 | diamètre d'une racine de blé |
60-30 | 50-100 | Tension de succion à la capacité au champ |
2 | 1 500 | limite de pore contenant de l'eau facilement utilisable |
0,2 | 15 000 | Point de flétrissement |
0,003 | 1 000 000 | Tension de succion d'un sol sec à l'air |
TABLEAU 1-A : Relation entre la taille des pores et la tension de succion nécessaire pour les vider de leur eau (d'après ROWELL, 1994)
La tension de succion du sol peut être exprimée en unités de pression ou en hauteur d'eau. Les pédologues emploient volontiers une unité particulière, le pF, qui est le logarithme de la pression négative P exprimée en cm d'eau (cf figure 1):
pF = log P
1 pression de 1 atmosphère (1013 hPa) correspond à un pF de 3.
La tension de succion du sol correspond à un potentiel matriciel provoqué par les phénomènes de capillarité et d'absorption-adsorption de l'eau sur les particules du sol. Rappelons que la hauteur d'ascension capillaire de l'eau dans un tube fin suit la loi de Jurin :
h = 2s / r d g
- h : hauteur de l'eau dans le tube
- s : tension superficielle du liquide
- r : rayon du tube
- d: densité du liquide
- g : accélération de la pesanteur
La montée de l'eau est de 150 mm pour un tube de 0,1 mm.
Le potentiel matriciel du sol augmente quand la teneur en eau diminue. Il est de l'ordre de 330 hPa, soit pF=2,5, pour la capacité au champ d'un sol limoneux.
La transpiration des plantes extrait l'eau de la zone non saturée du sol, parfois même de la zone saturée. Cette extraction est possible jusqu'à une certaine valeur limite de la teneur en eau du sol; les racines doivent vaincre le potentiel de matrice qui retient l'eau et qui augmente avec le départ de l'eau; au delà d'une certaine valeur, la plante ne peut plus vaincre la tension et satisfaire son besoin, elle flétrit. Le point de flétrissement d'une plante varie d'une espèce à l'autre. Le volume d'eau disponible pour les plantes, appelé "réserve utile" comprend la "réserve facilement utilisable" et la «réserve de survie»; elle dépend de 2 paramètres: la profondeur du sol colonisée par le système racinaire (1 m environ pour une culture annuelle de blé ou de maïs) et la texture du sol. Pour une profondeur d'1 m, on obtient des valeurs de réserve utile allant de 70 mm d'eau pour un sol sableux grossier à 200 mm d'eau pour un sol limono-argileux. L'eau est extraite par les racines des plantes, elle circule dans la tige et les feuilles puis elle est vaporisée à travers les stomates dans l'atmosphère. Le soleil fournit l'énergie nécessaire à la vaporisation de l'eau. La transpiration d'un végétal est réglée par l'ouverture des stomates, elle-même dépendant de la nature, de l'état hydrique du végétal et des conditions climatiques (rayonnement solaire, température de l'air, déficit de saturation de l'air).
saturation: l'eau s'écoule capacité de champ: le maximum d'eau est retenu sur le terrain
point de flétrissement: les racines ne peuvent plus vaincre les forces de rétention de l'eau.
L'évapo-transpiration réduit la quantité d'eau s'infiltrant vers la nappe. En été, elle reprend la totalité de l'eau qui a pénétré dans le sol; la nappe ne peut être alimentée que pendant les mois d'hiver. La teneur en eau du sol peut descendre au dessous de la capacité au champ et même atteindre le point de flétrissement près de la surface: un courant d'eau capillaire s'établit depuis la profondeur. La perte en eau d'un sol est plus faible depuis la profondeur. La perte en eau d'un sol est plus faible lorsque celui-ci est nu, car il se forme une croûte superficielle qui limite l'évaporation: on comprend l'utilité de désherber les cultures. Les remontées capillaires sont importantes lorsqu'il existe une nappe : l'eau peut remonter jusqu'à 1 m au dessus du niveau de la nappe dans un sol limoneux et être utilisée par les racines. On a décrit des remontées de 40 m depuis la nappe de la craie jusqu'aux rendzines (sols calcaires) sus-jacents. En année sèche, les remontées capillaires peuvent être importantes et atteindre 100 mm, soit l'équivalent de la réserve hydrique du sol.