Cours de Géologie

Gagner Du Temps, Trouvez Ce Que Vous Voulez En Remplissant Ce Formulaire

Le cycle du soufre

Tout comme l’azote et le phosphore, le soufre est un élément essentiel à la Vie. À l’origine de la Terre, le soufre était contenu dans les roches ignées, principalement dans la pyrite (FeS2). Le dégazage de la croûte terrestre et subséquement l’altération sous des conditions aérobies ont transféré à l’océan une grande quantité de soufre sous la forme de SO42-. Quand SO4 est assimilé par les organismes, il est réduit et converti en soufre organique qui est un élément essentiel des protéines. Comme dans le cas de l’azote, les réactions microbiennes sont déterminantes dans le cycle du soufre.

La compréhension du cycle global du soufre acquiert une grande importance pour l’économie minérale et dans le débat sur les changements climatiques et la pollution atmosphérique. Plusieurs métaux, dont le cuivre, le zinc, le plomb, sont extraits des sulfures des dépôts hydrothermaux. Dans certains cas, des réactions microbiennes sont utilisées pour concentrer des sulfures métalliques à partir de solutions diluées. Le soufre est un constituant important des pétroles et des charbons et leur combustion libère du dioxyde de soufre SO2 dans l’atmosphère. Pouvoir départager les sources naturelles des sources anthropiques des composés du soufre dans l’atmosphère est fondamental pour cerner les causes des pluies acides et leur impact sur les écosystèmes.

Les composés du souffre sont multiples. Les principaux sont les suivants:

a) dans l’atmosphère, à l’état gazeux:

  • le soufre réduit comme dans le diméthylsulfure (acronyme: DMS) dont la formule chimique est CH3SCH3 et le carbonyl de sulfure COS,
  • le dioxyde de soufre SO2,
  • les sulfates en aérosols SO4.
b) dans les systèmes aquatiques: les composés majeurs sont les sulfates dissouts SO4-

c) dans les sédiments et les roches sédimentaires:

  • les sulfures métalliques, surtout la pyrite FeS2,
  • les évaporites: gypse CaSO4. nH2O et anhydrite CaSO4,
  • les matières organiques.
  

Le cycle du phosphore

Comme dans le cas de l’azote (N), le phosphore (P) est important pour la Vie puisqu’il est essentiel à la fabrication des acides nucléiques ARN et ADN. On le retrouve aussi dans le squelette des organismes sous forme de PO4. Dans la Terre primitive, tout le phosphore se trouvait dans les roches ignées. C’est par l’altération superficielle de ces dernières sur les continents que le phosphore a été progressivement transféré vers les océans. On a calculé qu’il a fallu plus de 3 Ga (milliards d’années) pour saturer les océans par rapport au minéral apatite [Ca5(PO4)3OH], un phosphate. Le cycle du phosphore est unique parmi les cycles biogéochimiques majeurs: il ne possède pas de composante gazeuse, du moins en quantité significative, et par conséquent n’affecte pratiquement pas l’atmosphère. Il se distingue aussi des autres cycles par le fait que le transfert de phosphore (P) d’un réservoir à un autre n’est pas contrôlé par des réactions microbiennes, comme c’est le cas par exemple pour l’azote.

Pratiquement tout le phosphore en milieu terrestre est dérivé de l’altération des phosphates de calcium des roches de surface, principalement de l’apatite. Bien que les sols contiennent un grand volume de phosphore, une petite partie seulement est accessible aux organismes vivants. Ce phosphore est absorbé par les plantes et transféré aux animaux par leur alimentation. Une partie est retournée aux sols à partir des excréments des animaux et de la matière organique morte. Une autre partie est transportée vers les océans où une fraction est utilisée par les organismes benthiques et ceux du plancton pour secréter leur squelette; l’autre fraction se dépose au fond de l’océan sous forme d’organismes morts ou de particules et est intégrée aux sédiments. Ces derniers sont transformés progressivement en roches sédimentaires par l’enfouissement; beaucoup plus tard, les roches sont ramenées à la surface par les mouvements tectoniques et le cycle recommence.

  

Le cycle de l'azote

On a vu que la vie sur terre influence profondément la compositon de l’atmosphère en produisant du dioxyde de carbone CO2 et du méthane CH4 à travers les processus de la respiration et la fermentation reliés au recyclage du carbone. La Vie a aussi influencé la composition de l’atmosphère à travers le recyclage d’un autre élément, l’azote (N). Ce gaz est le premier en importance dans l’atmosphère terrestre (78%). Il s’y trouve sous sa forme moléculaire normale diatomique N2, un gaz relativement inerte (peu réactif). Les organismes ont besoin d’azote pour fabriquer des protéines et des acides nucléiques, mais la plupart ne peuvent utiliser la molécule N2. Ils ont besoin de ce qu’on nomme l’azote fixée dans lequel les atomes d’azote sont liés à d’autre types d’atomes comme par exemple à l’hydrogène dans l’ammoniac NH3 ou à l’oxygène dans les ions nitrates NO3-. Le cycle de l’azote est très complexe; le schéma suivant en présente une simplification.

  

Le cycle de l'oxygene

Un cycle géochimique essentiel à la Vie sur terre est en grande partie contrôlé par l'océan. Il s'agit du cycle de l'oxygène libre (O2). Si la vie a pu se maintenir et proliférer à la surface du globe, c'est qu'elle a inventé un mécanisme de défense contre ce poison violent pour elle qu'est l'oxygène, ainsi que la capacité d'exploiter cette ressource. Ce mécanisme, c'est la respiration. En même temps qu'elle inventait ce mécanisme, elle en devenait dépendante.

Même si le rayonnement UV brise les molécules de vapeur d’eau (H2O) et de dioxyde de carbone (CO2) atmosphériques et produit ainsi de l’oxygène libre (O2), cette production est insignifiante en volume. L’O2 est essentiellement un sous-produit de la photosynthèse, ce processus qui, à partir du CO2 et de l'eau, utilise l'énergie solaire pour fixer le carbone dans des hydrates de carbone (CH2O), la matière des premières cellules végétales, ou encore des formes très simples de bactéries. Cette réaction dégage de l'oxygène comme nous l’avons vu au point précédent 3.4.2 et comme le répète l’équation au haut du schéma qui suit.

  

Le cycle du carbone

L'hydrogène (H), l'hélium (He), l'oxygène (O) et le carbone (C) sont, dans l'ordre, les éléments les plus abondants dans le cosmos. Sur Terre cependant, ce sont l'oxygène et le silicium qui dominent, le carbone venant en quatorzième place seulement.

Le recyclage des éléments à travers les diverses composantes à la surface de la Planète est fortement lié au fait que la Terre est une planète vivante. L'élément le plus critique attaché à ce recyclage est sans contredit le carbone. Depuis que le cycle biologique du carbone est apparu sur Terre, il a en quelque sorte transformé cette planète en un système fermé qui assure sa continuité. Il est le constituant majeur de deux gaz à effet de serre, CO2 et CH4, sans lequel il ne saurait y avoir de vie sur terre ; son recyclage influence particulièrement la productivité biologique et le climat. Le cycle global du carbone implique des processus qui agissent en milieu terrestre et en milieu océanique et où interviennent des réactions chimiques biologiques et non-biologiques. On ne peut discuter sérieusement de changements climatiques sans connaître le B.A.-Ba de ces processus.

Précisons d'abord que dans la nature, le carbone se retrouve sous deux formes: le carbone organique (Corg) et le carbone inorganique (Cinorg). Il est souvent utile de faire la distinction. Le Corg est celui qui est produit par des organismes vivants et qui est lié à d'autres carbones ou à des éléments comme l'hydrogène (H), l'azote (N) ou le phosphore (P) dans les molécules organiques ou les hydrocarbures. Le Cinorg est celui qui est associé à des composés inorganiques, c'est-à-dire des composés qui ne sont pas et n'ont pas été du vivant et qui ne contiennent pas de lien C-C ou C-H, comme par exemple le carbone du CO2 atmosphérique ou celui des calcaires CaCO3.

  

Le cycle de l'eau

Les planétoïdes, comètes et astéroïdes qui ont formé la planète Terre par leur accrétion contenaient toute l’eau de notre planète. Après cette accrétion, qui s'est terminée il y a 4,55 Ga (milliards d’années), la Terre a connu une période intense de dégazage qui a libéré l’eau sous forme de vapeur par l’intermédiaire des volcans. Aussi longtemps que la température terrestre s’est maintenue au-dessus de 100 °C, cette vapeur fut gardée dans l’atmosphère, créant un effet de serre important. Quand la température est descendue sous les 100 °C, la vapeur atmosphérique a condensé pour former les océans. On ne sait trop quand ceux-ci sont apparus, mais on a des évidences de la présence des océans il y a quelques 3,8 Ga comme en témoignent les premières roches sédimentaires, des roches qui nécessitent la présence d’eau pour se former (altération de massifs rocheux, érosion, transport et dépôt des particules, comme nous l'avons vu au point 2.2.2). Une faible quantité de vapeur d’eau est demeurée dans l’atmosphère, suffisamment pour maintenir un certain niveau d’effet de serre (avec le CO2 venant aussi des volcans) sans lequel notre planète serait une boule de glace. Cela explique aussi que la lithosphère et l’asthénosphère contiennent un immense volume d’eau.

La circulation annuelle de l'eau constitue le plus grand déplacement d'une substance chimique à la surface de la Planète. Par les processus de l'évaporation-précipitation et la circulation océanique, l'eau transfère, des tropiques aux pôles, une grande partie de l'énergie calorifique reçue par la Terre et constitue ainsi le régulateur des températures du globe. Ces déplacements de l'eau déterminent les patrons climatiques de notre planète. Autre élément important pour la survie de notre espèce, la quantité d'eau disponible annuellement est le facteur déterminant de la croissance des plantes terrestres et par conséquent influence énormément la productivité primaire. Le ruissellement des eaux continentales transfère les produits de l'altération physique et chimique vers les océans.

On a vu plus haut (point 3.1.1) quel était le bilan hydrologique de la surface terrestre, sur la base du cycle externe précipitation-ruissellement-évaporation. La figure ci-dessous présente le cycle complet (externe et interne) de l'eau à l'échelle du globe terrestre tout entier.